Issue: December 2018
October 22, 2018
2 min read
Save

AI-based retinal screening systems may outperform clinicians

Issue: December 2018
You've successfully added to your alerts. You will receive an email when new content is published.

Click Here to Manage Email Alerts

We were unable to process your request. Please try again later. If you continue to have this issue please contact customerservice@slackinc.com.

Studies have shown that artificial intelligence-based diabetic retinopathy screening algorithms have identified disease at a high rate of sensitivity and specificity, according to a paper recently published by a group of experts.

Perspective from Mark Swanson, OD, FAAO

AI is a branch of computer science aimed at creating intelligent machines. By imitating the neural structure of the central nervous system, artificial neural networks (ANNs) are capable of complementing or substituting some of the visual recognition tasks performed by physicians.

Mimicking the paths of the human brain, they can potentially identify and quantify pathological features, formulate a diagnosis, produce treatment algorithms and, based on the processing of large amounts of data, predict the course of a given disease in a given patient. Several studies have demonstrated that AI in specific fields can already perform equally to or better than practicing clinicians.

AI-based systems have recently been approved for screening diabetic retinopathy (DR), and their performance was shown to be equal to that of a panel of expert ophthalmologists, achieving a high degree of sensitivity and specificity. In April, the first FDA-approved AI system to detect a greater than mild level of DR was launched on the market.

“FDA approval was granted based on a study of 900 patients with diabetes at 10 primary care sites, which resulted in correct identification of a positive findings indicative of DR in 87.4% of individuals and a correct negative result in 89.5%,” the authors wrote.

The largest study on the subject was performed by Ting and colleagues within the Singapore National Diabetic Screening program. The study evaluated the sensitivity and specificity of an AI system for the detection of DR and concomitant diseases in 494,661 images. Sensitivity ranged from 91% to 100% and specificity between 73% and 92%.

“All these examples show that AI-based DR screening algorithms have reached or may even outperform the level of accuracy of clinical experts. DR screening in particular carries enormous potential as support for ophthalmologists, may help to reduce the prevalence of late and cost-intensive disease stages and is likely to pioneer digital medicine applications in the near future and at a large scale,” the authors wrote. – by Michela Cimberle

Reference:

Ting DSW, et al. JAMA. 2017;doi:10.1001/jama.2017.18152.

Disclosure: Schmidt-Erfurth is a consultant for Boehringer Ingelheim, Genentech, Novartis and Roche. Please see the study for the other authors’ financial disclosures.